Search results for "bounded mean oscillation"
showing 7 items of 7 documents
Essential norm estimates for composition operators on BMOA
2013
Abstract We provide two function-theoretic estimates for the essential norm of a composition operator C φ acting on the space BMOA; one in terms of the n-th power φ n of the symbol φ and one which involves the Nevanlinna counting function. We also show that if the symbol φ is univalent, then the essential norm of C φ is comparable to its essential norm on the Bloch space.
Vector-valued analytic functions of bounded mean oscillation and geometry of Banach spaces
1997
When dealing with vector-valued functions, sometimes is rather difficult to give non trivial examples, meaning examples which do not come from tensoring scalar-valued functions and vectors in the Banach space, belonging to certain classes. This is the situation for vector valued BMO. One of the objectives of this paper is to look for methods to produce such examples. Our main tool will be the vector-valued extension of the following result on multipliers, proved in [MP], which says that the space of multipliers between H and BMOA can be identified with the space of Bloch functions B, i.e. (H, BMOA) = B (see Section 3 for notation), which, in particular gives that g ∗ f ∈ BMOA whenever f ∈ H…
Finitely randomized dyadic systems and BMO on metric measure spaces
2015
Abstract We study the connection between BMO and dyadic BMO in metric measure spaces using finitely randomized dyadic systems, and give a Garnett–Jones type proof for a theorem of Uchiyama on a construction of certain BMO functions. We obtain a relation between the BMO norm of a suitable expectation over dyadic systems and the dyadic BMO norms of the original functions in different systems. The expectation is taken over only finitely randomized dyadic systems to overcome certain measurability questions. Applying our result, we derive Uchiyama’s theorem from its dyadic counterpart, which we also prove.
Cluster values of holomorphic functions of bounded type
2015
We study the cluster value theorem for Hb(X), the Fréchet algebra of holomorphic functions bounded on bounded sets of X. We also describe the (size of) fibers of the spectrum of Hb(X). Our results are rather complete whenever X has an unconditional shrinking basis and for X = ℓ1. As a byproduct, we obtain results on the spectrum of the algebra of all uniformly continuous holomorphic functions on the ball of ℓ1. Fil: Aron, Richard Martin. Kent State University; Estados Unidos Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Lassalle, S…
The norm of the characteristic function of a set in the John‐Nirenberg space of exponent p
2020
Weighted bounded mean oscillation applied to backward stochastic differential equations
2015
Abstract We deduce conditional L p -estimates for the variation of a solution of a BSDE. Both quadratic and sub-quadratic types of BSDEs are considered, and using the theory of weighted bounded mean oscillation we deduce new tail estimates for the solution ( Y , Z ) on subintervals of [ 0 , T ] . Some new results for the decoupling technique introduced in Geiss and Ylinen (2019) are obtained as well and some applications of the tail estimates are given.